
- 1. Examples handout 1, questions 9 through 13; Examples handout 2, all questions.
- 2. Consider the following circuit:

 $F(A, B, C, D) = ABD + B\overline{C}D + \overline{A}C$ 

- (a) What input transitions could potentially produce a hazard?
- (b) Give an alternative circuit with the same output as F that does not have any hazards.
- (c) Give a minimal product-of-sums implementation of F and explain whether there are or are not any static hazards.
- 3. What is  $c_5$ , the boolean formula for the fifth carry-out bit using the fast-carry scheme described in the lecture notes? How do the number of gate delays required to compute  $c_5$  compare to the number of gate delays required for  $c_4$  (hint: consider the *most* optimal way of parallelising the  $c_4$  and  $c_5$  computations)?
- 4. Using a 1-of-8 decoder and OR gates create a circuit that takes a 3-bit number  $A_2A_1A_0$  and outputs the number of 1's in the input as a 2-bit number  $Z_1Z_0$ .
- 5. Page 86 of the lecture notes explains that a T flip-flop is essentially a J-K flip-flop with its inputs tied together (e.g., the diagram below, on the left).



It is possible to do something similar to implement a D flip-flop, starting with a T flip-flop. Determine the logic that needs to go in the dotted box for the overall circuit to behave like a D flip-flop. *Hint: The circuit inside the box will need to use Q, the output of the T flip-flop.*